-
「大模型」之所短,「知识图谱」之所长
最近一年以来,大语言模型技术突飞猛进,被广泛地认为开启了人工智能研究的新阶段。大语言模型时代的到来,给知识图谱技术也带来了新的机遇与挑战。我们在 5 月份的时候曾经发布过知识图谱与 AIGC 大模型的知识地图,其中包括了文本生成、图像生成等技术。本次分享...
-
爆火后反转?「一夜干掉MLP」的KAN:其实我也是MLP
多层感知器(MLP),也被称为全连接前馈神经网络,是当今深度学习模型的基础构建块。MLP 的重要性无论怎样强调都不为过,因为它们是机器学习中用于逼近非线性函数的默认方法。 但是最近,来自 MIT 等机构的研究者提出了一种非常有潜力的替代方法 ——KAN。...
-
LeCun转发,AI让失语者重新说话!纽约大学发布全新「神经-语音」解码器
脑机接口(BCI)在科研和应用领域的进展在近期屡屡获得广泛的关注,大家通常都对脑机接口的应用前景有着广泛的畅享。 比如,由于神经系统的缺陷造成的失语症不仅严重阻碍患者的日常生活,还可能限制他们的职业发展和社交活动。随着深度学习和脑机接口技术的迅猛发展,...
-
MLP一夜被干掉!MIT加州理工等革命性KAN破记录,发现数学定理碾压DeepMind
一夜之间,机器学习范式要变天了! 当今,统治深度学习领域的基础架构便是,多层感知器(MLP)——将激活函数放置在神经元上。 那么,除此之外,我们是否还有新的路线可走? 就在今天,来自MIT、加州理工、东北大学等机构的团队重磅发布了,全新的神经网络结构...
-
新研究强调了GenAI应用中的人才短缺和战略缺口
最近的一项研究表明,美国企业对生成式人工智能(GenAI)提高其业务和员工生产力的潜力充满热情。但在高涨的热情背后,领导者认为,理解差距、缺乏战略规划和人才匮乏是实现和衡量技术全部价值的障碍。 这项研究是今年早些时候由科尔曼帕克斯研究公司进行的,由SA...
-
人工智能将如何影响药物研发
创造新药是一个艰苦的过程,需要多年的努力和大量的资金才能取得重大进展。在如此巨大的资金和生命攸关的情况下,加速药物发现过程一直是行业专业人士最关心的话题。 就像其他所有涉及大量耗时任务的行业一样,随着人工智能工具的引入,药物发现正在经历一场革命。 虽然...
-
AI学会隐藏思维暗中推理!不依赖人类经验解决复杂任务,更黑箱了
AI做数学题,真正的思考居然是暗中“心算”的? 纽约大学团队新研究发现,即使不让AI写步骤,全用无意义的“……”代替,在一些复杂任务上的表现也能大幅提升! 一作Jacab Pfau表示:只要花费算力生成额外token就能带来优势,具体选择了什么token无...
-
打破壁垒:生成式人工智能如何重塑数据分析场景
想了解更多AIGC的内容,请访问: 51CTO AI.x社区 https://www.51cto.com/aigc/ 深入探讨生成式人工智能的原则和模型,以及它在数据分析中的应用。 面对快速变化的市场格局,企业必须不断寻求新的技术突破来保持领先地位。生...
-
人工智能的十大局限性
在技术创新领域,人工智能(AI 是我们这个时代最具变革性和前景的发展之一。人工智能凭借其分析大量数据、从模式中学习并做出智能决策的能力,已经彻底改变了从医疗保健和金融到交通和娱乐等众多行业。然而,在取得显著进步的同时,人工智能也面临着阻碍其充分发挥潜力的...
-
聊聊机器学习与人力资源管理碰撞什么火花?
前 言 近年来,机器学习领域取得了许多重大突破,人工智能技术驱动的人力资源管理服务产品也拥有一个庞大且充满活力的市场。越来越多的企业和政府机构逐渐开始思考将机器学习技术应用于人力资源管理,通过神经网络做出正确有效的决策,准确地预测人力资源管理的结果。...
-
开箱黑盒LLM!谷歌大一统框架Patchscopes实战教程来了
虽然大型语言模型(LLM)在各种常见的自然语言处理任务中展现出了优异的性能,但随之而来的幻觉,也揭示了模型在真实性和透明度上仍然存在问题。 在模型生成错误回复内容时,如果能够「深入理解其背后运行机制」,或许可以解决模型的幻觉问题。 然而,随着深度神经网络...
-
基于因果推断的推荐系统:回顾和前瞻
本次分享的主题为基于因果推断的推荐系统,回顾过去的相关工作,并提出本方向的未来展望。 为什么在推荐系统中需要使用因果推断技术?现有的研究工作用因果推断来解决三类问题(参见 Gao et al.的 TOIS 2023 论文 Causal Inference...
-
守护生成式人工智能之门,规避人工智能进化中的安全挑战
想了解更多AIGC的内容,请访问: 51CTO AI.x社区 https://www.51cto.com/aigc/ 生成式人工智能(GenAI 代表了人工智能的一个重大飞跃,能够创建文本、音频、图像、代码等新颖而逼真的数据。虽然这项创新具有巨大的...
-
机器学习如何提高商业智能
机器学习(ML 在商业智能(BI 的持续发展中发挥着关键作用。随着ML的出现,企业正在超越传统分析,采用更复杂的方法来解读庞大的数据集。本文探讨了ML为BI带来的革命,标志着从单纯的数据分析到预测洞察和决策策略的重大转变。 ML在BI中的集成 将ML集...
-
生成型人工智能优化框架研究
想了解更多AIGC的内容,请访问: 51CTO AI.x社区 https://www.51cto.com/aigc/ 简介 生成类似人类的文本和语音曾经只有在科幻小说中才成为可能。但是,GPT-3和PaLM等大型语言模型(LLM)的快速发展...
-
人工智能是否被高估了?
毫无疑问,人工智能已经成为近年来最热门的话题之一,吸引着技术专家、企业家和公众的想象力。然而,在围绕人工智能的炒作和兴奋中,关于人工智能是否被高估的争论越来越多。一些批评人士认为,人工智能只是一种先进的曲线拟合,而不是所描绘的革命性技术。 人工智能的核...
-
好书推荐 《AIGC重塑金融》
作者:林建明 来源:IT 阅读排行榜 本文摘编自《AIGC 重塑金融:AI 大模型驱动的金融变革与实践》,机械工业出版社出版 这是最好的时代,也是最坏的时代。尽管大模型技术在金融领域具有巨大的应用潜力,但其应用也面临不容忽视的风险和挑战。本文将深入研...
-
突破障碍:生成式人工智能如何重塑数据分析领域
在当今市场状况下,企业必须不断寻求新方法来利用技术突破以保持领先地位。生成式人工智能是一个近年来迅速扩展的突出领域。 Gartner预测,到2026年,超过80%的组织将使用生成式人工智能API、模型或应用程序,而2023年这一比例不到5%。生成式人工智...
-
深度学习:AIGC重塑金融大模型驱动金融变革
作者:林建明 来源:IT阅读排行榜 本文摘编自《AIGC重塑金融:AI大模型驱动的金融变革与实践》,机械工业出版社出版 这是最好的时代,也是最坏的时代。尽管大模型技术在金融领域具有巨大的应用潜力,但其应用也面临不容忽视的风险和挑战。本文将深入研究大模型...
-
【粉丝福利社】《AIGC重塑金融:AI大模型驱动的金融变革与实践》(文末送书-进行中)
? 作者简介,愚公搬代码 ?《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,51CTO博客专家等。 ?《近期荣...
-
【AIGC】大模型在金融行业的应用场景和落地路径
这是最好的时代,也是最坏的时代。尽管大模型技术在金融领域具有巨大的应用潜力,但其应用也面临不容忽视的风险和挑战。本文将深入研究大模型在金融领域的数据隐私和安全风险、模型可解释性和透明度、监管和合 规要求,梳理中国、美国、欧洲等地 AIGC 技术的应用规则,...
-
AIGC重塑金融:AI大模型驱动的金融变革与实践
?个人主页: Aileen_0v0?热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ?个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-tVrfBkGvUD0Qi13F {font-family:"trebuchet...
-
AIGC重塑金融 | 大模型在金融行业的应用场景和落地路径
作者:林建明 来源:IT阅读排行榜 本文摘编自《AIGC重塑金融:AI大模型驱动的金融变革与实践》,机械工业出版社出版 目录 01 大模型在金融领域的 5 个典型应用场景 02 大模型在金融领域应用所面临的风险及其防范 03 AIGC 技术的科...
-
探索AIGC技术的未来:人工智能生成内容的挑战与机遇
引言 随着人工智能技术的迅猛发展,人工智能生成内容(AIGC)技术已经逐渐走进人们的视野。AIGC技术是指利用人工智能技术生成各种形式的内容,如文字、图像、音频、视频等。这种技术不仅可以提高内容生产效率,还可以创造出更加丰富多样的内容。本文将深入探讨AI...
-
DriveCoT:全面的开环端到端驾驶数据集和Benchmark
本文经自动驾驶之心公众号授权转载,转载请联系出处。 近年来,端到端自动驾驶技术取得了显著进展,表现出系统简单性和在开环和闭环设置下竞争性驾驶性能的优势。然而,端到端驾驶系统在驾驶决策方面缺乏可解释性和可控性,这阻碍了其在真实世界中的部署。本文利用CAR...
-
通用文档理解新SOTA,多模态大模型TextMonkey来了
最近,华中科技大学和金山的研究人员在多模态大模型 Monkey [1](Li et al., CVPR2024)工作的基础上提出 TextMonkey。在多个场景文本和文档的测试基准中,TextMonkey 处于国际领先地位,有潜力带来办公自动化、智慧教...
-
LLM、RAG虽好,但XGBoost更香!
编译 | 言征 出品 | 51CTO技术栈(微信号:blog51cto) 数据&AI企业家、投资人Oliver Molander 近日在LinkedIn上的帖子中打趣道:“如果你在2022年[ChatGPT推出]之前问人工智能专家什么是LL...
-
华为天才少年谢凌曦:关于视觉识别领域发展的个人观点!
本文经自动驾驶之心公众号授权转载,转载请联系出处。 最近,我参加了几个高强度的学术活动,包括CCF计算机视觉专委会的闭门研讨会和VALSE线下大会。经过与其他学者的交流,我产生了许多想法,千头万绪,便希望把它们整理下来,供自己和同行们参考。当然,受限于...
-
降低AIGC总体疑似率的七大策略
随着人工智能技术的飞速发展,AIGC(人工智能生成内容)的应用越来越广泛。然而,随之而来的问题是AIGC的疑似率居高不下,这给人们带来了不少困惑和疑虑。为了解决这个问题,本文将探讨降低AIGC总体疑似率的七大策略。 提高数据质量 数据是训练人工智能模...
-
企业对人工智能的强烈需求推动了人工智能信任和安全市场
预计到2030年,全球人工智能信任、风险和安全管理市场规模预计将达到74.4亿美元。研究人员预计该市场从2024年到2030年的复合年增长率将达到21.3%随着组织越来越多地采用人工智能,对偏见、可解释性和安全漏洞的担忧也随之增加,这使得人工智能信任、...
-
AI写作的奥秘:从深度学习到智能创造的突破
大家好,小发猫降重今天来聊聊 AI写作的奥秘:从深度学习到智能创造的突破,希望能给大家提供一点参考。 以下是针对论文重复率高的情况,提供一些修改建议和技巧,可以借助此类工具: 标题: AI写作的奥秘:从深度学习到智能创造的突破 内容: 当我们谈...
-
AI写作的边界探索:从困惑到爆发的七重考验
大家好,小发猫降ai今天来聊聊AI写作的边界探索:从困惑到爆发的七重考验,希望能给大家提供一点参考。降ai辅写 以下是针对论文AI辅写率高的情况,提供一些修改建议和技巧,可以借助此类工具: 还有: AI写作的边界探索:从困惑到爆发的七重考验...
-
AI大模型控制红绿灯,港科大(广州)智慧交通新成果已开源
大模型“上路”,干起了交通信号控制(TSC)的活~ 模型名为LightGPT,以排队及不同区段快要接近信号灯的车辆对路口交通状况分析,进而确定最好的信号灯配置。 该模型由香港科技大学(广州)的研究团队提出,其背后关键是一个名为LLMLight的框架。...
-
揭开LLM智慧涌现的面纱:OpenAI开源调试工具Transformer Debugger深入LLM的神经元秘密
在人工智能的浪潮中,大型语言模型(LLM)以其惊人的语言理解和生成能力成为了研究和应用的热点。从简单的文本分类到复杂的自然语言理解,LLM的应用领域不断扩展,涵盖了机器翻译、情感分析、自动摘要、聊天机器人等多个方面。随着模型规模的增长,它们的内部工作机制...
-
OpenAI官宣开源Transformer Debugger!不用写代码,人人可以破解LLM黑箱
AGI真的越来越近了! 为了确保人类不被AI杀死,在解密神经网络/Transfomer黑箱这一方面,OpenAI从未停下脚步。 去年5月,OpenAI团队发布了一个令人震惊的发现:GPT-4竟可以解释GPT-2的三十万神经元! 网友纷纷惊呼,智慧原来是这...
-
未来的人工智能开发人员需要从ChatGPT的漏洞中学到什么
在快速发展的人工智能领域,推出像ChatGPT这样强大的模型既让人敬畏,也让人反思。 随着这些人工智能系统的能力令人眼花缭乱,它们也暴露了一系列漏洞,为未来的开发人员提供了宝贵的经验教训。 本文深入探讨了ChatGPT漏洞产生的关键见解,揭示了未来人工...
-
VAD v2端到端SOTA | 远超DriveMLM等方法(地平线)
从大规模驾驶演示中学习类似人类的驾驶策略是很有前途的,但规划的不确定性和非确定性本质使得这一任务充满挑战。在这项工作中,为了应对不确定性问题,作者提出了VADv2,一个基于概率规划的端到端驾驶模型。VADv2以流方式输入多视角图像序列,将传感器数据转换为...
-
机器学习中的十种非线性降维技术对比总结
降维意味着我们在不丢失太多信息的情况下减少数据集中的特征数量,降维算法属于无监督学习的范畴,用未标记的数据训练算法。 尽管降维方法种类繁多,但它们都可以归为两大类:线性和非线性。 线性方法将数据从高维空间线性投影到低维空间(因此称为线性投影 。例子包括...
-
机器学习中七种常用的线性降维技术总结
上篇文章中我们主要总结了非线性的降维技术,本文我们来总结一下常见的线性降维技术。 1、Principal Component Analysis (PCA Principal Component Analysis (PCA 是一种常用的降维技术,用于...
-
八项指标对比ChatGPT和文心一言
文章目录 前言 特定指标对比: 实际运用对比: 一、算力 二、训练时间 三、算法复杂度 四、模型结构 五、应用场景 六、性能指标 七、可解释性 八、迁移能力 ✍创作者:全栈弄潮儿 ? 个人主页: 全栈弄潮儿的个人主页 ?️ 个人...
-
AIGC内容分享(四):金融行业AIGC落地方法论的探索和研究
目录 摘要 关键词 大模型解决领域应用问题的本质及要求 (一)领域应用的本质是复杂决策 (二)领域应用的专业性要求较高 (三)金融领域应用对大模型有更高要求 金融行业如何选择AIGC的适用场景 (一)使用AIGC需解决的三大问题 (二)如...
-
AIGC与计算机技术:人工智能生成内容的深度探索
AIGC与计算机技术:人工智能生成内容的深度探索 摘要:随着人工智能技术的快速发展,AIGC(人工智能生成内容)成为了计算机领域的前沿话题。本文将详细探讨AIGC的基本原理、技术应用和未来发展趋势,以及它对计算机科学和整个社会的影响。 一、AIGC...
-
AIGC 语言大模型研究报告
AIGC 研究报告 这份报告可以被划分为两大部分。 第一部分集中于ChatGPT的发展和运作原理,为了增强理解,我们将先探讨自然语言处理的历史发展。 第二部分主要聚焦于由大模型引领的新的研究领域,并深入介绍在每个领域中可以进行的具体研究工作及思...
-
文心一言 使用指南
文心一言快速入门指南,只要3步 第一步:不要“学”,直接拿来用 刚开始一个月,尽量让自己每天玩10次文心一言。把自己工作、生活中遇到的问题,随手记录下来,扔给文心一言,看看它有什么建议。大约大半个月后,会逐渐发现文心一言的迷人之处。这个时候...
-
AIGC在物联网与智能制造中的实践
1.背景介绍 1. 背景介绍 物联网和智能制造是当今最热门的技术领域之一,它们在各种行业中发挥着重要作用。随着计算机视觉、自然语言处理和机器学习等技术的发展,人工智能(AIGC 在物联网和智能制造领域的应用也日益增多。本文将探讨AIGC在物联...
-
大模型真能解决一切吗?关于知识驱动自动驾驶的一些思考
本文经自动驾驶之心公众号授权转载,转载请联系出处。 上个星期受邀在外面做了一次关于「知识驱动自动驾驶」的讲座,刚好借这个机会把之前我和团队的一些学术上的思考整理凝练了一下。感觉里面一些内容还是挺值得拿出来分享&讨论的,所以开这么个帖子把其中一些关...
-
打破MoE训练效率与性能瓶颈,华为盘古稀疏大模型全新架构LocMoE出炉
2023 年 12 月,首个开源 MoE 大模型 Mixtral 8×7B 发布,在多种基准测试中,其表现近乎超越了 GPT-3.5 和 LLaMA 2 70B,而推理开销仅相当于 12B 左右的稠密模型。为进一步提升模型性能,稠密 LLM 常由于其参数...
-
【Stable Diffusion】通过ControlNet修复手臂
ControlNet用处 ControlNet是一个用于机器人控制的高度模块化的、灵活的开源框架,它支持各种传感器、执行器和通信协议。ControlNet可以用于各种应用领域,包括但不限于: 工业自动化:ControlNet可以用于工业自动化系统...
-
人类和AI的决策协作:决策问题的表述、解释和评价
在人工智能、数据可视化等领域,如何利用信息显示来辅助人类做出更好的决策,是一个重要的研究目标。什么是一个决策问题,以及如何设计一个能够有效评估人类决策的实验,没有一个明确的共识。在这篇文章中,我将为您解读一篇最新的论文,它提出了一个基于统计决策理论和信息...
-
极新AIGC行业峰会 | 圆桌对话:探索中国AGI迭代之路
“AGI正处在一个巨大的研发范式革命的起点。” 整理 | 周梦婕 编辑 | 小白 出品|极新 2023年11月28日,极新AIGC行业峰会在北京东升国际科学院拉开帷幕,峰会上午的圆桌环节由凡卓资本合伙人王梦菲主持,深势科技战略副总裁何雯、Zil...