-
人工智能教程(六):Keras 和第一个数据集
在本系列的 上一篇文章中,我们学习了使用 Anaconda,加强了概率论的知识。在本文中我们将继续学习概率论的知识,学习使用 seaborn 和 Pandas 进行数据可视化,并进一步介绍 TensorFlow 和 Keras 的使用。 让我们从增长人...
-
大模型推理速度飙升3.6倍,「美杜莎」论文来了,贾扬清:最优雅加速推理方案之一
如你我所知,在大型语言模型(LLM)的运行逻辑中,随着规模大小的增加,语言生成的质量会随着提高。不过,这也导致了推理延迟的增加,从而对实际应用构成了重大挑战。 从系统角度来看,LLM 推理主要受内存限制,主要延迟瓶颈源于加速器的内存带宽而非算术计算。这一...
-
买个机器人端茶倒水有希望了?Meta、纽约大学造了一个OK-Robot
「xx,去把电视柜上的遥控器帮我拿过来。」在一个家庭环境中,很多家庭成员都不免被支使干这种活儿。甚至有时候,宠物狗也难以幸免。但人总有支使不动的时候,宠物狗也并不一定都能听懂。帮人类干活儿的终极梦想还是寄托在机器人身上。 最近,纽约大学、Meta 研发出...
-
首个通用双向Adapter多模态目标追踪方法BAT,入选AAAI 2024
目标跟踪是计算机视觉的一项基础视觉任务,由于计算机视觉的快速发展,单模态 (RGB 目标跟踪近年来取得了重大进展。考虑到单一成像传感器的局限性,我们需要引入多模态图像 (RGB、红外等 来弥补这一缺陷,以实现复杂环境下全天候目标跟踪。 然而,现有的多...
-
数字时代数据现代化的重要性
1、什么是数据现代化,为什么它在数字时代很重要? 数据现代化是更新和改进组织的数据基础设施、工具和实践的过程,以满足数据驱动的业务运营和分析不断变化的需求,确保数据可访问、安全和有效利用。数据现代化策略提高数据质量、数据安全性和敏捷性。它涉及的任务包括...
-
人工智能数学基础 - 线性代数之矩阵篇
本文将从矩阵的本质、矩阵的原理、矩阵的应用三个方面,带您一文搞懂人工智能数学基础-线性代数之矩阵。 一、矩阵的本质 点积(Dot Product):点积作为向量间的一种基本运算,通过对应元素相乘后求和来刻画两向量的相似度和方向关系。 点积(Dot Pr...
-
画个框、输入文字,面包即刻出现:AI开始在3D场景「无中生有」了
现在,通过文本提示和一个2D 边界框,我们就能在3D 场景中生成对象。 看到下面这张图了没?一开始,盘子里是没有东西的,但当你在托盘上画个框,然后在文本框中输入文本「在托盘上添加意大利面包」,魔法就出现了:一个看起来美味可口的面包就出现在你的眼前。 房间...
-
使用SPIN技术对LLM进行自我博弈微调训练
2024年是大型语言模型(llm 的快速发展的一年,对于大语言模型的训练一个重要的方法是对齐方法,它包括使用人类样本的监督微调(SFT 和依赖人类偏好的人类反馈强化学习(RLHF 。这些方法在llm中发挥了至关重要的作用,但是对齐方法对人工注释数据有的大...
-
AI对比:ChatGPT和文心一言的区别和差异
目录 一、ChatGPT和文心一言大模型的对比分析 1.1 二者训练的数据情况分析 1.2 训练大模型数据规模和参数对比 1.3 二者3.5版本大模型对比总结 二、ChatGPT和文心一言功能对比分析 2.1 二者产品提供的功能情况分析...
-
CharacterGLM体验入口 语言AI技术平台免费试用方法
CharacterGLM是智谱AI开放平台专注语言AI技术产业化落地的尖端工具。通过开放大模型芯片、语言模型API和各行业应用工具,让AI大模型的能力普惠于千行百业,帮助企业和开发者快速连接AI的力量,实现AI的产业化赋能,将AI技术的好处带给每个人。...
-
万字总结 | 2023大模型与自动驾驶论文走马观花
本文经自动驾驶之心公众号授权转载,转载请联系出处。 2023年已经匆匆过去大半,不知各位自动驾驶小伙伴今年的工作生活情况是否顺利呢?高阶ADAS方案量产了吗?新的文章和实验进展又是否顺利呢?今天给大家总结了2023年前后的一些自动驾驶结合大模型的开创性...
-
北京国际电影节AIGC电影单元;提示工程最佳实践;手把手教你构建基于RAG的LLM应用;多伦多大学AI对齐最新课程;国产大模型行研能力测评 | ShowMeAI日报
?日报&周刊合集 | ?生产力工具与行业应用大全 | ? 点赞关注评论拜托啦! ? Runway AIFF 2024 | 第二届AI电影节,作品提交进入50天倒计时 https://aiff.runwayml.com...
-
迈向分割的大一统!OMG-Seg:一个模型搞定所有分割任务
本文经自动驾驶之心公众号授权转载,转载请联系出处。 写在前面&笔者个人思考 图像分割已经从单任务分割走到了语义分割、实例分割、全景分割三种分割任务的统一;大模型以及多模态的发展又带来了文本和图像统一,使得跨模态端到端成为可能;追求更高级、更全面...
-
stable diffusion模型评价框架
GhostReview:全球第一套AI绘画ckpt评测框架代码 - 知乎大家好,我是_GhostInShell_,是全球AI绘画模型网站Civitai的All Time Highest Rated (全球历史最高评价 第二名的GhostMix的作者。在上...
-
stable diffusion模型训练时数据量
文生图模型之Stable Diffusion - 知乎通向AGI之路码字真心不易,求点赞! https://zhuanlan.zhihu.com/p/6424968622022年可谓是 AIGC(AI Generated Content)元年,上半年有文生...
-
AI作画的背后是怎么一步步实现的?一文详解AI作画算法原理+性能评测
前言 “AI作画依赖于多模态预训练,实际上各类作画AI模型早已存在,之所以近期作品质量提升很多,可能是因为以前预训练没有受到重视,还达不到媲美人类的程度,但随着数据量、训练量的增多,最终达到了现在呈现的效果。”远在AI作画还没有爆火之前,深度学习就已经...
-
LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline
近年来,大型语言模型(LLM)取得了显著的进步,然而大模型缺点之一是幻觉问题,即“一本正经的胡说八道”。其中RAG(Retrieval Augmented Generation,检索增强生成)是解决幻觉比较有效的方法。本文,我们将深入研究使用...
-
DeepSeek 发布全新开源大模型,数学推理能力超越 LLaMA-2
自从 LLaMA 被提出以来,开源大型语言模型(LLM)的快速发展就引起了广泛研究关注,随后的一些研究就主要集中于训练固定大小和高质量的模型,但这往往忽略了对 LLM 缩放规律的深入探索。 开源 LLM 的缩放研究可以促使 LLM 提高性能和拓展应用领域...
-
2024年1月11日最热AI论文Top5:开源界Stable Diffusion杀手、Prompt-tuning、零和游戏博弈
本文整理了今日发表在ArXiv上的AI论文中最热门的 TOP5。 以下内容由 赛博马良-「AI论文解读达人」 智能体生成,人工整理排版。 「AI论文解读达人」智能体可提供每日最热论文推荐、AI论文解读等功能。 如需查看其他热门论文,欢迎移步saibo...
-
Llama 2- Open Foundation and Fine-Tuned Chat Models<3>
3.4 RLHF 结果 3.4.1 基于模型的评估 评估LLMs是一个具有挑战性的开放研究问题。人类评估虽然是黄金标准,但可能会因各种 HCI 考虑因素而变得复杂(Clark 等人,2021;Gehrmann 等人,2023),并且并不总是可扩展的...
-
2024 年值得关注的 6 大生成式 AI 趋势
2023年是人工智能领域长期以来最具颠覆性的一年,大量生成式人工智能产品进入主流。继续其变革之旅,生成式人工智能有望在2024年从兴奋的话题转变为现实世界的应用。 随着科技公司不断开发和微调人工智能模型,生成式人工智能领域正在迅速发展,催生了一系列广泛的趋...
-
[论文精读] 自条件图像生成 - 【恺明大神新作,AIGC 新基准】
论文导读: 论文背景: 2023年8月,AI大神何恺明在个人网站宣布,2024年将加入MIT担任教职,回归学术界。这篇论文是其官宣加盟MIT后首度与MIT师生合著的公开论文,论文一作本科毕业于清华姚班,二作为MIT电气工程与计算机科学系教授,今年的斯...
-
认识 AIGC ,浅淡 AIGC 的那些事—— AIGC:用 AI 创造万物
文章目录 ?关于封面 ?关于活动 ?前言 ?什么是 AIGC ? ?AIGC:用 AI 创造万物 ?AIGC 的意义与发展 ?AIGC 的发展历程 ?人工智能生成内容的发展历程与概念 ?早期萌芽阶段(1950s-990s) ?沉淀积累阶段...
-
stable-diffusion、stable-diffusion-webui、novelai、naifu区别介绍
文章目录 1. Stable Diffusion Reference 2. Stable Diffusion WebUI Reference 3. NovelAI Reference 4. Naifu Reference 区别简述 Refere...
-
无需训练实现价值观实时动态对齐:上交开源价值观对齐方法OPO,闭源与开源大模型均适用
随着人工智能技术的发展,以 GPT-4 为代表的大语言模型依靠其强大的能力正在对社会产生深远的影响。与此同时,大模型本身的安全性问题也变得尤为重要。如何确保大语言模型可以和人类的价值、真实的意图相一致,防止模型被滥用、输出有害的信息,这是大模型安全治理的...
-
Beatoven.ai官网体验入口 AI免费音乐背景音乐使用地址入口
Beatoven.ai是一款基于 AI 的免费音乐生成工具,能够根据不同的情绪需求为视频、播客等内容生成定制化的背景音乐。它使用了先进的 AI 音乐创作技术,可以智能地根据内容的不同部分创作出多个配乐片段。 Beatoven.ai提供了 16 种不同情感...
-
消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型
大模型的「幻觉」问题马上要有解了? 威斯康星麦迪逊大学和谷歌的研究人员最近开发了一个名为ASPIRE的系统,可以让大模型对自己的输出给出评分。 如果用户看到模型的生成的结果评分不高,就能意识到这个回复可能是幻觉。 如果系统可以进一步筛选评分的结果进行输...
-
纪念碑谷式错觉图像都被「看穿」,港大、TikTok的Depth Anything火了
人类有两只眼睛来估计视觉环境的深度信息,但机器人和 VR 头社等设备却往往没有这样的「配置」,往往只能靠单个摄像头或单张图像来估计深度。这个任务也被称为单目深度估计(MDE)。 近日,一种可有效利用大规模无标注图像的新 MDE 模型 Depth Any...
-
一个开源的大型语言模型LLaMA论文简单解读,LLaMA: Open and Efficient Foundation Language Models
一个开源的大型语言模型LLaMA论文解读,LLaMA: Open and Efficient Foundation Language Models 返回论文和资料目录 1.导读 LLaMA 是 Meta AI 发布的包含 7...
-
可令 AI 自我判断输出内容正确性,谷歌公布模型训练框架 ASPIRE
IT之家 1 月 23 日消息,谷歌日前发布新闻稿,介绍了一款专为大语言模型设计的 ASPIRE 训练框架,该框架号称可以增强 AI 模型的选择性预测能力。 谷歌提到,当下大语言模型在自然语言理解和生成内容方面发展迅速,已被用于构建各种创新应用,但要...
-
AIGC神器CLIP:技术详解及应用示例
编者按:上一期,我们介绍了Diffusion模型的发展历程、核心原理及其对AIGC发展的推动作用。本期,我们将共同走进另一项AI重要突破——CLIP,著名的DALLE和Stable Diffusion均采用了CLIP哦。 Nikos Kafrit...
-
什么是diffusion model? 它为什么好用?
本文经自动驾驶之心公众号授权转载,转载请联系出处。 简介 NCSN (Noise Conditional Score Networks)来自于宋飏博士发表在 NeurIPS2019 上面的文章“Generative Modeling by Estima...
-
2024年数据中心发展趋势:更热、更密、更智能
如今的数据中心行业与十年之前颇有不同,这主要是受过去几年间诸多现实因素的影响:AI技术的大规模扩散、摩尔定律有所放缓,以及令人头痛的可持续性问题等。 Uptime Institute预计,随着运营商对于供电、冷却、管理、高密度与监管压力等问题的关注和规划...
-
【AIGC】AnimateDiff:无需定制化微调的动画化个性化的文生图模型
前言 Animatediff是一个有效的框架将文本到图像模型扩展到动画生成器中,无需针对特定模型进行调整。只要在大型视频数据集中学习到运动先验知识。AnimateDiff就可以插入到个性化的文生图模型中,与Civitai和Huggingface的文生图...
-
纯LiDAR 3D检测路在何方?时序递归TimePillars:直接干到200m!
基于LiDAR点云点3D Object Detection一哥是一个很经典的问题,学术界和工业界都提出了各种各样的模型来提高精度、速度和鲁棒性。但因为室外的复杂环境,所以室外点云的Object Detection的性能都还不是太好。而激光雷达点云本质上比...
-
分析Stable Diffusion、AnimateDiff、animatediff-cli-prompt-travel 区别
1.animatediff-cli-prompt-travel 和animatediff区别 animatediff-cli-prompt-travel和animatediff在功能和使用方式上有一些不同。 首先,ani...
-
世界顶尖多模态大模型开源!又是零一万物,又是李开复
领跑中英文两大权威榜单,李开复零一万物交出多模态大模型答卷! 距离其首款开源大模型Yi-34B和Yi-6B的发布,仅间隔不到三个月的时间。 模型名为Yi Vision Language(Yi-VL),现已正式面向全球开源。 同属Yi系列,同样具有两个版本...
-
大模型 Dalle2 学习三部曲(一)Latent Diffusion Models学习
引言 Diffusion model大获成功,但是它的短板也很明显,需要大量的计算资源,并且推理速度比较慢。如何才能提升Diffusion model的计算效率。业界有各种各样的改进,无疑Latent Diffusion Models(潜在扩散模...
-
扩散模型 - Stable Diffusion
4 Stable Diffusion Stable Diffusion 是由 Stability AI 开发的开源扩散模型。Stable Diffusion 可以完成多模态任务,包括:文字生成图像(text2img)、图像生成图像(img2img)...
-
数据猿预测:2024年大模型、AIGC的十个“小趋势”
大数据产业创新服务媒体 ——聚焦数据 · 改变商业 随着2024年的到来,我们站在了人工智能发展的新十字路口,大模型技术不仅突破了以往的限制,更开启了未来可能性的新篇章。在这个关键时刻,我们预见到了一系列颠覆性的发展趋势,它们不...
-
爆肝整理全网最全最新AI生成算法【Stable Diffusion|Diffusion Model|DallE2|CLIP|VAE|VQGAN】原理解析
1、生成模型 首先回顾一下生成模型要解决的问题: 如上图所示,给定两组数据z和x,其中z服从已知的简单先验分布π(z (通常是高斯分布),x服从复杂的分布p(x (即训练数据代表的分布),现在我们想要找到一个变换函数f,它能建立一种z到x的映射f:z...
-
人工智能实战:Stable Diffusion技术分享
背景 Stable Diffusion是计算机图形学和可视化领域中的一项重要技术。在这篇分 享中 ,我们将深入探讨稳定扩散的原理、关键要素和实施步骤 ,通过了解Stable Diffusion的流程化 ,我们可以提升自身的设计能力和创造力 ,为公司 和个...
-
LLaMa 原理+源码——拆解 (KV-Cache, Rotary Positional Embedding, RMS Norm, Grouped Query Attention, SwiGLU)
原理 Vanilla Transformer 与 LLaMa 的区别 Embedding RMS Norm Rotary Positional Encodding SwiGLU Function KV-Cache Grouped Mult...
-
UCLA提出多模态具身智能大模型MultiPLY AI首次拥有类人感官
近日,UCLA等机构的研究人员推出了具身智能大模型MultiPLY,该模型不仅具备多模态感知能力,包括触觉、视觉、听觉等,使得AI能够更全面地与3D环境进行交互。这标志着具备多感官能力的大模型成为未来AI发展的重要方向。 MultiPLY在多任务实验中表...
-
逆天了!UniVision:BEV检测和Occupancy联合统一框架,双任务SOTA!
本文经自动驾驶之心公众号授权转载,转载请联系出处。 写在前面&个人理解 最近这几年以视觉为中心的3D感知在自动驾驶中得到了快速发展。尽管3D感知模型在结构和概念上有许多相似之处,但在特征表示、数据格式和目标方面仍存在差距,这对统一高效的3D感知...
-
视觉Mamba模型的Swin时刻,中国科学院、华为等推出VMamba
Transformer 在大模型领域的地位可谓是难以撼动。不过,这个AI 大模型的主流架构在模型规模的扩展和需要处理的序列变长后,局限性也愈发凸显了。Mamba的出现,正在强力改变着这一切。它优秀的性能立刻引爆了AI圈。 上周四, Vision Mamb...
-
ActAnywhere体验入口 AI自动视频背景生成工具在线使用地址
ActAnywhere是一个用于自动生成与前景主体运动和外观相符的视频背景的生成模型。该任务涉及合成与前景主体运动和外观相一致的背景,同时也符合艺术家的创作意图。ActAnywhere利用大规模视频扩散模型的力量,并专门定制用于此任务。ActAnywher...
-
AIGC的初识
?欢迎来到自然语言处理的世界 ?博客主页:卿云阁 ?欢迎关注?点赞?收藏⭐️留言? ?本文由卿云阁原创! ?首发时间:?2023年12月26日? ✉️希望可以和大家一起完成进阶之路! ?作者水平很有限,如果发现错误,请留言轰炸哦!万分...
-
网络安全人士必知的AI专业术语
随着人工智能的迅猛发展,我们正置身于第四次工业革命的浪潮中。在这个数字化的时代,网络安全成为各行业至关重要的议题。作为网络安全从业人员,不仅需要熟练掌握传统安全领域的知识,更需要深刻理解和运用人工智能,以在风云变幻的网络战场中保护信息资产。人工智能不仅为...
-
针对特定领域较小的语言模型是否与较大的模型同样有效?
经过2023年的发展,大语言模型展示出了非常大的潜力,训练越来越大的模型成为有效性评估的一个关键指标,论文《A Comparative Analysis of Fine-Tuned LLMs and Few-Shot Learning of LLMs f...